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I. INTRODUCTION 

At the time of the first Texas Symposium in 1963, the field which I 

am IlOW about to discuss, did not yet exist. Major topics at that 

symposium revolved around qLaasi-stellar sources, massive stars and 

gravitational collapse. The state of cosmology at that time was alS0 in 

sharp contrast with our present views. After all, the First Texas 

Symposium was held before the discovery of the 3°K microwave background 

radiation by Penzias and Wilson. 1) Discussions on cosmology still 

centered on trying to determine a basic cosmological model, the 

steady-state theory or the big bang. Only since the discovery of the 

microwave background, have efforts been concentrated on the big bang 

model, i.e. our Universe has evolved from a once very hot and very dense 

epoch. 

Traced backwards, the 3OK photon background gives us information 

about the Universe when those photons were last in thermal contact with 

each other; when the age of the UniVSrSe was about lo5 yrs and its 

temperature about 1040K. Our next single most important piece of 

evidence regarding our hot past comes from the abundances of the light 

elements. As early as the 1940’s, nuclear physics began to play a role 

in cosmology when it was realized 2) that if our Universe began with 

temperatures in excess of 1 MeV or 101oOK, nucleosynthesis would have 

occurred and in particular the abundance of ‘He can be calculated. The 

fact that big bang nucleosynthesis agrees with the observed abundances 

of the light elements gives us added proof of our hot beginnings. Big 

bang nucleosynthesls began when the age of the Universe was about one 

second. 
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Cosmology today does not stop at t - Is. Indeed “reasonable” 

statements begin at the Planck epoch or when tu = 10 -44 s. In this 

review, I hope to highlight our current understanding of the various 

stages in the evolution of the Universe from t - 10 -4 s to the period of 

galaxy formation at t _> 10~ yrs. I will try to follow a chronological 

order for the discussion. Therefore, I will begin briefly (as I do not 

believe that too much can actually be said realistically) with the 

Planck epoch. In section 3, I will discuss the inflationary epoch. In 

section 4, I will review the present status of big bang baryosynthesis 

i.e., the origin of the apparent slight excess of baryons over 

antibaryons. This is perhaps our third most reliable piece of evidence 

indicating a hot big bang. I will review the present status of big bang 

nucleosynthesis in section 5 and discuss why I feel it is one of the 

greatest successes of the standard big bang model. Finally, in 

section 6, I will review the present role of particles in the Universe. 

That is their effects on galaxy formation and Constraints from present 

observations that can be placed on particle properties. 

Throughout this paper I will be using units such that 

fi = c = kB = 1 and all masses will be given in GeV (unless specifically 

noted otherwise). 

II. THE PLANCK ERA 

The Planck era is defined as the epoch when energy scales become 

comparable to the Planck mass M - 1.22 x 10” 
P 

CeV. At these energies, 

one expects gravitational interactions to become comparable to other 

particle interactions, CN = M -2. 
P 

The age of the Universe at this point 

is tu P “-1 = 5 x lo+ s. 
P 

Cosmology at or above M 
P’ 

must rely on a deep 
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understanding of gravitational interactions. At the present, such 

theories are not yet available and cosmological models begin to get very 

fuzzy (or foamy?3)). There are however several approaches to attack this 

problem which I will very briefly describe. These include quantum 

gravity, Kaluza-Klein theories and supergravity. 

Quantum gravity’) is an attempt to describe gravitational 

interactions at the same level as is possible for the strong, weak and 

electromagnetic interactions. In the context of the early Universe, 

quantum gravitational effects on particle production have been 

discussed5) for isotropic as well as anisotropic models. Initial 

conditions such as the primordial wave function of the Universe 6) have 

also been put forward in this context. 

Kaluza-Klein theories 7) which began in the 1920’s. have awoken 

interest again recently. 8) The basic idea is that one associates gauge 

interactions with extra dimensions. Or rather, one begins with a 4 + d 

dimensional theory and one tries to reduce it to a 4-dimensional 

space-time with the compactified dimensions acting like gauge 

interactions. For example, to account for the U(l) gauge group for 

electromagnetic interactions one must simply go to 5 dimensions. For a 

SU(5) grand unified theory (GUT) one needs 2 11 dimensions. A major 

problem concerning these theories is that they contain only real-field 

representations for particles.g) The standard low energy theory of 

electroweak interactions however contains chiral fields (i.e.. there are 

left-handed and right-handed helicity representations). Hence 

Kaluza-Klein theories could not provide a true unified theory which 

includes the standard low energy world. These theories have been useful 

however in that they have begun to establish a formalism for treating 
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(and compactifying) extra dimensions which may be present in the more 

hopeful supergravity or superstring theories. For a review of the 

cosmological applications of Kaluza-Klein thecries see ref. 10. 

Supersymmetryl ’ ) is a symmetry between bosons and f ermions. 

Besides its beauty as a symmetry of nature, it has gained most of its 

popularity through its resolution of what is known as the gauge 

hierarchy problem in standard GUTS. Very simply, the gauge hierarchy 

problem is the problem concerning mass scales which arise in a theory. 

For example the weak interaction scale is Mu - lo2 GeV while the GUT 

scale is Mx - lo l5 GeV. The problem is why are these scales so 

different. Furthermore, a technical problem arises when one considers 

radiative corrections to these scales. Radiative corrections to the 

weak mass scale will tend to be as large as the GUT scale and must 

therefore be cancelled with enormous precision, and to many orders in 

perturbations theory. 

Although such a cancellation is possible, it is not at all natural. 

Supersymmetry resolves 12) this difficulty in the sense that one can show 

that these radiative corrections vanish exactly. 13) Thus the weak scale 

of lo2 Cell is said to be stable with respect to radiative corrections. 

The most striking effect of making a model supersymmetric, is that 

one essentially doubles the number of known particles. To all spin 1 

particles such as the photon or gluons one adds spin l/2 partners called 

photinos and gluinos; to all spin l/2 leptons and quarks one adds spin 0 

partners, sleptons (such as the selectron) and squarks. Spin 0 Higgs 

bosons are paired up with spin l/2 Higgsinos. If supersymmetry is made 

local (supergravity), then the theory incorporates gravity as well and 

hence the spin 2 graviton is joined to a spin 312 gravitino. 



If supersymmetry were an exact symmetry of nature, the 

supersymmetric partners would have identical properties (except for 

spin) and hence the selectron mass would be degenerate with the electron 

mass. However charged spin 0 particles with a mass of 511 keV have not 

been observed. Hence supersymmetry must be broken. In order to 

preserve the gauge hierarchy the corrections to scalar masses must be 

kept as small as lo2 GeV. These corrections turn out to be proportional 

to the gravitino masst4) which is related to the supersymmetry breaking 

scale by 

m3/2 
2 . Ms/Mp 

where M = 1.2 x 10 lg GeV is the Planck mass. 
P 

Thus MS < 1O1’ GeV. 

Low energy local N-l supergravity has been studied extensively. 15) 

At the Planck scale, there are many questions still-to be answered. For 

example, where did this effective low energy N-l theory come from. 

Several possibilities have been put forward. The true theory might be 

an N=8 supergravity16) (the largest possible in four dimensions) which 

breaks down to an N-l. N>l supergravity theories however, do not 

contain chiral fields and must be written in terms of constituent 

particles (preens) which confine at the Planck scale to ordinary 

particles. 17) More recently, N-l supergravity theories expressed in 

terms of lo-dimensional strings (superstrings)‘8) have drawn much 

interest in that they seem to be free of problems concerning infinities 

which are present in all other theories. 

If the reader has not yet determined this, my personal bias lies 

with supergravity. In the next section, I discuss how supersymmetry is 
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helpful to inflation and in section 6 how supersymmetry may provide an 

answer to the dark matter problems which plague cosmology. 

III. INFLATION 

As there are already several reviews 19) about inflation,20) I will 

try to be brief here. However any review of the very early Universe 

would be incomplete if it did not at least touch upon inflation. In 

short what is meant by inflation, is the effect of exponential expansion 

due to a supercooled phase transition in order to resolve several 

finetunings regarding the initial conditions in the standard big bang 

model. 

As examples of these problems, I will briefly describe what is 

known as the horizon problem and the curvature problem. The horizon 

volume or causally connected volume today, is just related to the age of 

the Universe 3 v. = to. The microwave background radiation with 

temperature To - 3OK has been decoupled from itself since the epoch of 

recombination at Td - 1040K. The horizon volume at that time was 

Vd = td. 3 Now the present horizon volume scaled back to the period of 

decoupling will be Vi = VO(TO/Td)3 and the ratio of this volume to the 

horizon volume at decoupling is 

1 

‘O”d - (VO/Vd)(TO/Td) 3 (3.1) 

- (to/td)3 (TO/~d)3 - 105, 

where I have used t d - 3.1012 set and t 
0 - 5~10~~ sec. The ratio (3.1) 

corresponds to the number of regions that were causally disconnected at 

recombination which grew into our present visible Universe. 
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The microwave background radiation appears to be highly isotropic. 

In fact, the limits on the anisotropy put 21) 

AT/T 5 (2-5) x 10 -5 
(3.2) 

This means that on large scales, the Universe must be very isotropic and 

homogeneous, (any inhomogeneities would also produce fluctuations in the 

microwave background). The horizon problem, therefore, is the lack of 

an explanation as to why lo5 causally disconnected regions at td all had 

the same temperature to within one part in 10’1 

The curvature problem (also known as the flatness or oldness 

problem) stems from the fact that although the Universe is very old, we 

still do not know whether it is open or closed. If we look at the 

Freidmann equatfon for the expansion of the Universe 

(3.3) 

where H is the Hubble parameter, R is the Robertson-Walker scale factor, 

p is the total mass energy density, k is the curvature constant (k-0,il 

for a flat, closed or open Universe) and A is the cosmological constant. 

Neglecting A, the curvature term can be expressed in terms of the 

density parameter 

n = P/P, (3.4) 

PC 
m +8nGN (3.5) 
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and the present value of the Hubble parameter, Ho as 

k/R2 = ($2 - 1) Ho’ . (3.6) 

If we now use the limits n < 4 and Ho < 100 km s -’ Mpc’ we can form a 

dimensionless constant 

;, - k/R2T2 = (fl - 1 ) H~/T~ 5 3H2/T2 
0 0 

< 2 X 10 -58 
(3.7) 

where I have used To > 2.7OK. In an adiabatically expanding Universe, k 

is absolutely constant CR - T-l) and thus the limit (6.4) represents an 

initial condition which must be imposed so that the Universe will have 

lived this long looking still so flat. 

A more natural initial condition might have been k - O(1). In this 

case the Universe would have become curvature dominated at T - 10-l M 
P’ 

For k = +l , this would signify the onset of recollapse. Even for k as 

small as O(1O-4o 1 the Universe would have become curvature dominated 

when T - 10 MeV or when the age of the Universe was only 0(10-2) sec. 

Thus not only is (3.7) a very tight constraint, it must also be strictly 

obeyed. Of course, it is also possible that k = 0 and the Universe is 

actually spatially flat. 

These are the two main problems that led Guth2’) to consider 

inflation. In the problems that were just discussed it was assumed that 

the Universe has always been expanding adiabatically. During a phase 

transition, however, this is not necessarily the case. If we look at a 

potential describing a phase transition from a symmetric false vacuum 

state 1 = 0 to the broken true vacuum at <Z> = v as in Fig. 1, and we 
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suppose that because of the barrier Separating the two minima the phase 

transition was a supercooled first-order transition. If in addition, 

the transition takes place at Tc such that Tz < Vo, the energy stored in 

the form of vacuum energy will be released. If released fast enough, it 

will produce radiation at a temperature T; - vo. In this reheating 

process entropy has been created and 

(RVf - (TR/Tc) (RTji (3.8) 

provided that TC is not too low. Thus we see that during a phase 

transition the relation RT - constant need not hold true and thus our 
. 

dimensionless constant k may actually not have been constant. 

The inflationary Universe scenario,20) is based on just such a 

situation. If during some phase transition, the value of RT changed by 

a factor of O(102g), these two cosmological problems would be solved. 

The isotropy would in a sense be generated by the immense expansion; one 

small causal region could get blown up and hence our entire visible 

Universe would have been at one time in thermal contact. In addition, 
^ 

the parameter k could have started out O(1) and have been driven small 

by the expansion. 

If, in an extreme case, a barrier as in Fig. 1 caused a lot of 

supercooling such that T4 << v 
C o, the dynamics of the expansion would 

have greatly changed. In the example of Fig. 1 the energy density of 

the symmetric vacuum, Vo, acts as a COSmOlogiCal constant with 

A - 8a vO/M;. (3.9) 
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If the Universe is trapped inside the false vacuum with I - 0, 

eventually the energy density due, to say, radiation will fall below the 

vacuum energy density, p i< Vo. When this happens, the expansion rate 

will be dominated by the constant V. and we will get the De Sitter-type 

expansion 

R- expCHt1, 

where 

H2 = n/3 = 8a Vo/3M;. 

(3.10) 

(3.11) 

The cosmological problems could be solved if 

H-I 2 65, (3.12) 

where T is the duration of the phase transition and the vacuum energy 

density was converted to radiation so that the reheated temperature is 

found by 

2 
$j N(TR) T; = vo. (3.13) 

where N(TR) is the number of degrees of freedom at TR. 

If such a barrier persists down to low temperatures, the phase 

transition must proceed via the formation of bubbles of the broken 

The bubble formation rate per unit volume is given by 22) phase. 
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P - Ae-‘, (3.14) 

where A1/4 is generally taken to be the overall mass scale in the 

problem (A - T4 or A - M4) and B is tunneling action. ‘The transition 

will take place in such a way so as to minimize the action. The phase 

transition will be complated when p > H4. 

The scenario just described is the original idea of Guth2’) for 

cosmological inflation. In this scenario, the Universe would undergo a 

phase transition, say SU(5) * SU(~)XSU(~)XU(~) in which the potential 

resembled that in Fig. 1. The Universe would then get hung up in the 

SU(5) phase down to a very low temperature. After completion of the 

phase transition, the Universe would reheat to 

TR - Mx/CN(TR)1”4. (3.15) 

Baryon generation would then follow so long as ‘CR was not too low. (See 

next section.) 

It is now known that there is a problem with Guth’s original idea 

for inflation.23) It turns out that the requirement that the Universe 

supercool for a long time (HT > 65) is not compatible with p > H4, i.e., 

the phase transition does not finish. In order to have a long 

inflationary time scale, a large barrier was necessary so as to be sure 

that the action for tunneling was also large. It is necessary in this 

scheme that the initial probability for tunneling be very small. The 

problem is that under these conditions the tunneling probability never 

catches up with the expansion rate. As a whole, the Universe remains in 

the De Sitter state trapped in the symmetric SU(5) vacuum with only a 
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few isolated bubbles containing the true SU(~)XSU(~)XU(~) vacuum. Not 

only is the resulting Universe very inhomogeneous, but each bubble 

remains empty as all of the energy is stored in the bubble walls and is 

only released through collisions which in this case do not occur. 

The solution to this problem is called the new inflationary 

Universe24) and its basic and simple idea is this: tunnel first and 

inflate later. To realize this type of inflation, one must have a long 

flat scalar potential. If one can argue (e.g., by thermal effects) that 

at early times or high temperatures the Universe was in the symmetric 

phase I: - Cl and then at some lower temperature T << To a bubble is 

formed . The supercooling may be due to either a barrier as in the 

previous case or a suppression of thermal fluctuations so that the field 

I rests near the origin. In the case of a barrier, once a bubble is 

formed , if the potential is very long and flat at values of E past the 

barrier, the potential energy density (approximately constant) will 

again act like a cosmological constant. If a single bubble were to 

expand by 29 orders of magnitude, the phase transition need not be 

completed as in the previous case. The entire visible Universe would be 

contained within one bubble. The bubble would be filled in this case 

not by bubble collisions, but by dissipation of the kinetic energy of 

the scalar field as it finally reaches its global minimum. A generic 

example of such a potential is shown in Fig. 2. 

Popular examples of flat potentials considered for inflation have 

been the Coleman-Weinberg 25) potentials which are derived by taking 

first-order radiative corrections to the tree potential. If scalar Self 

coup1 ings are small enough, the tree potential can be neglected and we 

can concentrate on the corrections. Using an SU(5) Coleman-Weinberg 
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potential has been shown to present several insurmountable 

difficulties26V27*28*29). These range from unnatural finetunings of the 

self-couplings 27) to transitions occuring to the wrong vacuum state.29) 

The most serious blow to Coleman-Weinberg type inflation comes from 

the density perturbations which are produced during the rollover. 28) The 

isotropy of the microwave background radiation tells us that any 

perturbations produced on large scales must have 6p/p 5 0(10-~). 

Ideally, what one would want from inflation is what is known as the 

Harrison-Zeldovich30) spectrum of density fluctuations. They are also 

known as scale independent perturbations which are the type most desired 

for the purposes of galaxy formation. Their magnitude, however, must be 

O(lO-4). Any perturbations stronger than this would produce visible 

anisotropies in the microwave background radiation while weaker 

perturbations would not have had enough time to grow during the present 

period of matter domination (since decoupling). 

As it turns out, phase transitions, such as the SU(5) transition 

described above, produce 31) very nearly the Harrison-Zeldovich spectrum 

which is desired. The perturbations are formed because the field @ does 

not roll down to its global minimum homogeneously. There will. in 

general, be a time spread over which certain regions roll down faster or 

slower than others. The density perturbations have been calculated 28) 

for SU(5) and turn out to be 6p/p - 50, i.e., nearly 5 orders of 

magnitude too large. 

Supersymmetry has led to the resolution of some of these 

problems.27*32) In ways similar to those in which supersymmetry resolves 

the gauge hierarchy problem discussed in the previous section, it 

relieves the problems of finetuning mass scales in inflation and hence 
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allows for flatter potentials. Another way to make flat potentials is 

to increase.the value of the vacuum expectation value v from - 1015GeV 

in GUT models to v-Mp-10t9GeV. This class of models is called primordial 

inflation.32) Considering primordial inflation and supersymmetry 

naturally leads one to inflation in supergravity. 33) 

The actual phase transition responsible for inflation is no longer 

the GUT phase transition and may happen before, during, or after the 

breaking of GUTS. The scale of SUpePSymmetry breaking MS must be much 

lower than the GUT or inflation scale (MS - 10” GeV) in order to 

preserve the gauge hierarchy. Therefore inflation should not be 

associated with the supersymmetry breaking transition. Indeed there 

have been efforts to associate the two, but these models have required 

large amounts of fine tunings.34) 

The simplest SUSY preserving inflationary models however, run into 

certain difficulties regarding initial conditions. In other words. if 

the initial conditions for inflation are determined by high temperature 

effects35) it has been shown that these are inconsistent with the 

requirements for a long inflationary period. 36) Non-minimal supergravity 

models offer a resolution to this problem. 37) In fact a very simple 

inflationary model can be written38) in the context of so-called 

39) no-scale non-minimal supergravity. These models are attractive in the 

sense that only one fundamental scale is put in by hand, namely the 

Planck scale, and the others are determined through radiative 

corrections. Such non-minimal models are also thought to stem from 

extended supergravity models of the type discussed in the previous 

section, and perhaps recent superstring theories. 40) 
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Finally, further recent work regarding the role of initial 

conditions and the possibility of inflation seems to favor heavily 

models of primordial inflation 41). It has been claimed 42) that at very 

high temperatures, the field responsible for inflation will not be found 

near E = 0 but rather spread very far from the high temperature minimum. 

This however is true only for certain circumstances and it has been 

shown that this effect does not occur in models of primordial inflation. 

The actual origin of inflation and the exact identity of the phase 

transition producing the desired supercooling are not known. Inflation 

exists as a possibility within the context of supergravity models. Its 

apparent beauty still reaches out further than our apparent ignorance. 

IV. GUTS AND COSMOLOGY 

The origins of the modern connection between particle physics and 

cosmology really began with the generation43) Of a small but finite 

baryon to entropy ratio using grand unified theories (CUTS).~~) The 

problem in cosmology is basically that there is apparently very little 

antimatter in the Universe and the number of photons greatly exceeds the 

number of baryons. If we define 

n = (n B - ng)/y (4.1) 

where n - S,B,y is the number density of baryons, antibaryons and photons, 

we find that 

n - nB/+ - lo 
-10 - 10-g (4.2) 
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(see section V). In a standard model, the entropy density today is 

related to ny by 

s = 7n Y (4.3) 

so that eq. (4.2) implies nB/s - lo-” - lo-". This ratio is conserved 

however and hence represents another undesirable initial condition, with 

its origin unknown. 

Let us for the moment, assume that in fact n = 0. We can compute 

the final number density of nucleons left over after annihilations have 

frozen out. At very high temperatures (neglecting a quark-hadron 

transition) T > 1 GeV, nucleons were in thermal equilibrium with the 

photon background and nN = nR = 312~ (a factor of 2 accounts for 

neutrons and protons and the factor 314 for the difference between fermi 

and bose statistics). As the temperature fell below a$, annihilations 

kept the nucleon density at its equilibrium value (rig/y) = (mN/T)3’2 

exp (-%/T) until the annihilation rate TA = -2 fell below the “N% 

expansion rate. This occurred at T - 20 MeV. However, at this time the 

nucleon number density has already dropped to 

%/n( = nu/y = 1O-18f (4.4) 

which is eight orders of magnitude too Sma114*) aside from the problem 

of having to separate the baryons from the antfbaryons. If any 

separation did occur at higher temperatures (so that annihilations were 

as yet incomplete) the maximum distance scale on which separation could 

occur is the causal scale related to the age of the Universe at that 



18 

time. At T - 20 MeV, the age of the Universe was only t - 2k10m3 sec. 

At that time, a causal region (with distance scale defined by 2ct) could 

only have contained 10e5Mg which is very far from the galactic mass 

scales which we are asking for separations to occur, 1012M (3’ 

A final possibility might be statistical fluctuations, but in a 

region containing 10’ 2M 8’ there are - lo*’ photons so that one would 

only expect statistical fluctuations to produce an asymmetry n - ,0-40i 

Thus we are left with the problem as to the origin of a small non-zero 

value for n. We can assume that it was an initial condition to start off 

with and in a baryon number conserving theory it would remain nearly 

constant. [The production of entropy (photons) could cause it to fall.] 

In this case, however, we must still ask ourselves, why is it so small? 

A more attractive possibility, however, Is to suppose that the baryon 

asymmetry was in some way generated by the microphysics. Indeed, if one 

can show that a small non-zero value for n developed from n = 0 (or any 

other value) as an initial condition, we could consider the question 

solved. In the rest of this section, we will look at this second 

possibility for generating a non-zero value of n using CUTS.~~) 

There are three basic ingredients necessary43) to generate a 

non-zero n. They are 

1. baryon number violating interactions 

2. C and CP violation 

3. a departure from thermal equilibrium. 

The first condition is rather obvious, unless there is some mechanism 

for violating baryon number conservation, baryon number will be 
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conserved and an initial condition such as n = 0 will remain fixed. C 

and CP violation indicate a direction for the asymmetry. That is, 

should the baryon number violating interactions produce more baryons 

than antibaryons? If C or CP were conserved, no such direction would 

exist and the net baryon number would remain at zero. The final 

ingredient is necessary in order to insure that not all processes are 

actually occurring at the same rate. For example, in equilibrium if 

every process which produced a positive baryon number was accompanied by 

an equivalent process which destroyed it, again no net baryon number 

would be produced. 

The first two of these ingredients are contained in GUTS. the third 

in an expanding universe where it is not uncommon that interactions come 

in and out of equilibrium. In SU(5), the fact that quarks and leptons 

are in the same multiplets allows for baryon non-conserving interactions 

such as e- + d ++ u + ii, etc., or decays of the supermassive gauge 

bosons X and Y such as X -t e- + d. u + ii. Although today these 

interactions are very ineffective because of the masses of the X and Y 

bosons, in the early Universe when T > M X 
- lo’* CeV these types of 

interactions should have been very important. C and CP violation is 

very model dependent. In the minimal SU(5) model, the magnitude of C 

and CP violation is too small to yield a useful value of n. The C and CP 

violation in general comes from the interference between tree level and 

first loop corrections. 

The departure from equilibrium is very common in the early Universe 

when interaction rates cannot keep up with the expansion rate. In fact, 

the simplest (and most useful) Scenario for baryon production makes use 

of the fact that a single decay rate goes out of equilibrium. It is 
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commonly referred to as the out of equilibrium decay scenario. 46) The 

basic idea is that the gauge bosons X and Y (or Higgs bosons) may have a 

lifetime long enough to insure that the inverse decays have already 

ceased so that the baryon number is produced by their free decays. 

More specifically, let us call X, either the gauge boson or Higgs 

boson, which produces the baryon asymmetry through decays. Let Q be its 

coupling to fermions. For X a gauge boson, u will be the GUT fine 

structure constant, while for X a Higgs boson, (4na) l/2 will be the 

Yukawa coupling to fermions. The decay rate for X will be 

pD - a MX. (4.5) 

However decays can only begin occurring when the age of the Universe is 

longer than the X lifetime fi’, i.e., when fD > H 

a MX -> N(T)"2T2/Mp 

or at a temperature 

2 -l/2 T < Q. MXMp~(T) . 

Scatterings on the other hand proceed at a rate 

rs - 02T3/M2 X 

(4.6) 

(4.7) 

(4.8) 

and hence are not effective at lower temperatures. In equilibrium, 

therefore, decays must have been effective as T fell below MX in order 
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to track the equilibrium density of X’s (and X’s). Thus the condition 

for equilibrium is that at T - MX, rD > H or 

MX 2 a M,(N(M,))-l/2 - lO’*c GeV. (4.9) 

In this case, we would expect no net baryon asymmetry to be produced. 

For masses MX 2 lo’*c CeV, the lifetime of the X bosons is longer 

than the age of the Universe when T - MX. Decays finally begin to occur 

when T < MX, however, the density of X’s is still comparable to photons 

nX’9 - 1 whereas the equilibrium density at T < MX is nx/nT - (MX/T) 312 

x ew [-MX/~i << I. Hence, the decays are occurring out of equilibrium 

(inverse decays are not occurring), and we have the possibility for 

producing a net asymmetry. 

Let us now look at what happens during the decay of an X,X pair. 

If we consider the example of the X gauge boson and its decays to ii,; 

with branching ratio r and net baryon number change Ab, _ -213 and to 

e-, d with branching ratio l-r, and net baryon number change Ab2 = +1,3 

x -;+ ; + u Ab, = -213 (4.lOa) 

X i-;: e- + d X Ab2=+1/3 (4.lOb) 

A similar set of decays will occur for z 

x --+ u + u 
r 

Abi = +2/3 

x --•t e+ + a 
1-f: 

Abs = -l/3 

(4.1 la) 

(4.llb) 
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If C and CP are violated then rt? and we can define the total net baryon 

number produced per decay of X and X 

AB = (Ab,)r + (Ab2) (l-r) + (Abi)F ’ (Abs) (1-r) 

= F - r. (4.12) 

The value of r-r will of course depend on the specific model for C and 

CP violation. 

The total baryon density that will have been produced by the X, x 

pair [provided Eq. (4.9) is not satisfied] is 

“B = (AB)nX (4.13) 

and since we also have n X = nE - nr* 

nB - (AB)“y. (4.14) 

Although the net baryon number is conserved during the subsequent 

evolution of the Universe, the photon number density is not. A more 

useful quantity just after baryon generation is the baryon-to-specific 

entropy ratio, nB/s. The entropy density, is 

s = $ N(T)T3 (4.15) 

At T $ MX - ,O’* CeV, we expect N(T) 2 o(lo0) so that s - O(lO0) nv. 

Thus the baryon-to-entropy ratio we would expect to produce in the 

out-of-equilibrium decay scenario would be 
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nB/3 - ,o-~(AB). (4.16) 

The value of nB/s that we are looking for must be related to the limits 

on n which will be discussed in section V. n in the range (3-10)~10-'~ 

corresponds to a value of nB/s in the range (4.3-14)x10-“. Comparing 

this with the expected production, Eq. (4.16) gives us a lot of hope 

that CUTS may provide us with a viable mechanism for generating a small 

(but not too small) value for n. 

Although we can be encouraged by the above scenario. we must still 

show that given a GUT, after the full set of Boltzmann equations have 

been integrated, an acceptable and definite value Of n emerges. In 

particular, most GUTS do satisfy Eq. (4.9), for a = l/41 and MX - 

lo’* CeV decays will be occurring at T - MX, but in at best partial 

equilibrium. Thus the estimate, Eq. (5.14) is not a good one. 

In Fig. 3, we look at the typical results which one finds after a 

complete numerical integration 47) of the Boltzmann equations. These 

particular results are for an SU(5) model, but their behavior is generic 

for most any GUT. What is plotted is the time development of the 

baryon-to-entropy ratio nB/s normalized to the net baryon number 

produced by pair decay, AB. The horizontal scale, Mx/T, is proportional 

to t”2. The three curves correspond to different choices for the mass 

of the boson X. In curve 1, we have chosen, a mass which we expect to 

satisfy the out-of-equilibrium condition Mx = 3x10’8c and we indeed find 

that the maximum asymmetry has been generated nB/s z 10m2A(B) as we 

expected (4.16). This in itself confirms the original idea. 

The good news that we find from Fig. 3 is that even for lower 

masses, an asymmetry is still produced. In curve 2, we have chosen Mx - 
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3~10~~~1 and we find still a substantial asymmetry nB/s - lo-’ CAB). What 

is happening is that at T - Mx, inverse decays are still effective in 

trying to restore equilibrium. Eventually, they too freeze out and any 

X’s and ji’s still present, decay freely to produce a net baryon number. 

If we continue to lower the mass as in curve 3, Mx = 3x1016c, 

scatterings begin to play a role in driving things further towards 

equilibrium. Again, when they freeze out the remaining X,x pairs decay 

leaving an asymmetry. If scatterings become dominant, however, the 

resulting asymmetry in the standard model will become exponentially 

small with decreasing Mx as shown in the dashed curve. In Fig. 4 we 

have plotted the final asymmetry which is produced as a function of K - 

3~1O'~cdM~ where K is defined by 

K = TD/HITBM . 
x 

(4.17) 

Depending on whether or not X is gauge or Higgs boson, the resulting 

final asymmetry can be approximated by 

nB/s = Ex,0-3(AB)/c1 + (3101*21 

for Higgs bosons. and 

nB/s - 8.10-3(AB)/[1 + (16K)1.31 

(4.18) 

(4.19) 

for gauge bosons. 

Thus we see that GUTS do indeed offer an explanation to the small 

but finite baryon to entropy ratio. In supersymmetric theories, the 
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ideas are generally the same although the details may be somewhat 

different.48)‘4g) 

V. BIG BANG NUCLEOSYNTHESIS 

As was noted in the introduction, the two most important pieces of 

evidence in support of the standard big bang model are the observation 1) 

of the 3OK microwave background radiation and the explanation 2) of the 

origin of the light elements and their abundances. Because of the 

initially high temperatures and densities and the large abundance of 

neutrons relative to protons, the chains of nuclear reactions similar to 

those occurring in stars might have occurred. Indeed in the simplest 

model of nucleosynthesis. one can compute the produced abundances of 

deuterium, 3He, ‘He and 7Li and one finds an amazing degree of agreement 

with the observed abundances. (The observations which must be compared 

with the big bang abundances must be from sources where little or no 

subsequent nucleosynthesis has taken place.) In this section I will 

review the predictions of big bang nucleosynthesis and its cosmological 

consequences in terms of limits on particle physics. 

The temperature region of interest is one typical of nuclear 

energies, i.e., T - 1 MeV. The initial conditions for the problem will 

therefore be set at T >> 1 MeV . Once again, because the asymmetry 

between baryons and antibaryons is so small and since we do not expect 

very different asymmetries among the leptons (standard GUT models even 

predict their similarity) we will take all chemical potentials to be 

zero. One of the chief quantities of interest will be the 

neutron-to-proton ratio (n/p). At very high temperatures (T >> 1 MeV), 

the weak interaction rates for the processes 



n + ve f+ p + e 

n+e + ++ p + ; 
e 

n ++ p + e- + ; 
e 
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(5.1) 

were all in equilibrium, i.e., rw > H. Thus we would expect that 

initially (n/p) - 1. Actually in equilibrium, the ratio is essentially 

controlled by the boltzmann factor so that 

(n/p) = exp(-Am/T), (5.2) 

where Am - mn - m p is the neutron-proton mass difference. For T >> Am, 

(n/p) = 1. 

At temperatures T >> 1 MeV. nucleosynthesis cannot begin to occur 

even though the rate for forming the first isotope, deuterium, is 

sufficiently rapid. To begin with, at T ? 1 MeV deuterium is 

photodissociated because g., > 2.2 MeV (the binding energy of deuterium; 

E 
Y = 2.7T for a blackbody). Furthermore, the density of photons is very 

high n.,/nB - 10”. Thus the onset of nucleosynthesis will depend on the 

quantity 

n-’ exp[-2.2 MeV/T] (5.3) 

where n is defined as before. When this quantity (5.3) becomes < O(l), 

the rate for p + n + D + Y finally becomes greater than the rate for 

dissociation D + Y + p + n. This occurs when T - 0.1 MeV or when the 

Universe is a little over 2 min. old. 
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Because nucleosynthesis begins when T < 1 MeV, the rates for 

processes which control (n/p) (5.1) as well as those which keep 

neutrinos in equilibrium are frozen out. Furthermore, because the rates 

for processes (5.1) also freeze out (at T < 1 MeV), the neutron to 

proton ratio must be adjusted from its equilibrium value. When freeze 

out occurs, the ratio (n/p) is relatively fixed at 

(n/p) - l/6. (5.4) 

This equilibrium value is adjusted by taking into account the free 

neutron decays up until the time at which nucleosynthesis begins. This 

reduces the ratio to 

(n/p) - l/7. (5.5) 

Since virtually all the neutrons available end up in deuterium which 

gets quickly converted to ‘He, we can estimate the ratio of the ‘He 

nuclei formed compared with the number of protons left over 

X4 = (N4 /NH) = l/2 (n/p)(l - (n/p)) 
He 

(5.6) 

or more importantly the 4He mass fraction 

Y4 = 4X4/(1 + 4x10 = 2(n/p)/(l + (n/p)). (5.7) 

For (n/p) = 1/7, we estimate that Y4 = 0.25 which is very close to the 

observed value. 
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The actual calculated value of Y4 will depend on a numerical 

calculation which runs through the complete sequence of nuclear 

reactions.*‘) The nuclear chain is temporarily halted because there are 

gaps at masses A - 5 and A = 8, i.e., there are no stable nuclei with 

those masses. There is some further production, however, which accounts 

for the abundances Of 6Li and 7Li. Once again because of the gap at A - 

8 there is very little subsequent nucleosynthesis in the big bang. A 

second chief factor in the ending of nucleosynthesis is that during this 

whole process the Universe continues to expand and cool. At lower 

temperatures it becomes exponentially difficult to overcome the Coulomb 

barriers in nuclear collisions. In spite of these effects, numerical 

calculations of the elemental abundance continue the chain up until Al. 

Before reviewing the results of the big bang nucleosynthesis50-53) 

calculations, it is important to realize that there are three additional 

parameters which have a very strong effect on the results.* They are 

1) the baryon-to-photon rati n; 2) the neutron half-life T,,~; 3) the 

number of light particles or, in particular, the number of neutrino 

flavors NV. 

As we have seen above, the value of n controls the onset of 

nucleosynthesis (5.3). Basically what happens is that for a larger 

baryon-to-photon ratio n the quantity (5.3) becomes smaller thus 

allowing nucleosynthesis to begin earlier at a higher temperature. 

Remember also that a key ingredient in determining the final mass 

fraction of 4He, Y4, was (n/p) [see gq. (5.711 and that the final value 

of (n/p) was determined by the time at which nucleosynthesis begins thus 

controlling the time available for free decays after freeze out. If 

nucleosynthesis begins earlier, this leaves less time for neutrons to 

decay and the value of (n/p) and hence Y4 iS increased. 

l 

I am not considering the e ects of a chemical potential, which can 
^1”^ -..^3+1.v . . ..“V. Lb0 “,,r.,l l F 565 
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The value of n cannot be determined directly from observations. If 

we break e find that 

nB = pB/mB = nBpc/mB 

= 1.13 x IO-*n& Cmm3, (5.8) 

where pg is the energy density in baryons, mB is the nucleon mass, RB is 

that part of R which is in the form of baryons and pc is the critical 

energy density. The number density of photons is just 

“v = 400 (T,/2.7)’ Cm-3, (5.9) 

where T o is the present tempe?atUPe of the microwave background 

radiation. Putting n back together we find 

I, - 2.81 x 10-8~Bh~(2.7/T0)3. (5.10) 

Thus we could determine n if we knew CIB, ho, and T 0’ 

The second Parameter, T,,~, is important in that it also plays a 

role in determining the value of Y4. Although we don’t usually consider 

T1/2 a parameter, the uncertainties in its measured value are 

significant from the point of view of nucleosynthesis. After all, it is 

this quantity which will control the weak interaction rates and hence 

determine the freeze-out temperature. The common value of T,,~ = lo.6 

min. is actually uncertain by about two percent and this is enough to 

affect the production of 4He. The range we will consider is 
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10.4 min. < T,,~ I 10.8 min. (5.11) 

As in the caJe of n, increasing T,,~ leads to a larger value of Y4. 

We can see this by looking again at a comparison between the weak 

interaction rates and the expanr’on rate. If we parameterize the weak 

interaction rate by rwk = AT* and the expansion rate by H = BT2 then the 

freeze-out temperature is determined by 

H(TD) = rwk(TD) (5.12) 

or 

Ti = B/A. (5.13) 

If we now increase I,,~, this corresponds to decreasing ruk - T,,;’ or 

decreasing the value of A. This in turn gives a higher value for Td. 

Wow if Td is larger, this will give a larger value of (n/p) at 

freeze-out via Eq. (5.2) and hence more ‘He via Eq. (5.7). 

The final input parameter, we said was the number of light 

particles. Specifically, what we mean is the number of degrees of 

freedom corresponding to particles which are still relativistic (m << T) 

when T < O(1) MeV. In addition, we must require that these particles be 

relatively stable so that they will be present when freeze-out occurs, 

thus T > few seconds. As we hinted to above, likely candidates for 

these particles are neutrinos and thus the number of neutrino flavors NV 

becomes important. Of course any other types of light particles such as 

photinos or axions. etc., may also be important. 
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The number of neutrino flavors NV will also affect the primordial 

abundance of 4 
He and like n and ~,,g, increasing NV increases Y4. The 

expansion rate is proportional to CN(T)]“*. At T 1 1 MeV, N(T) is given 

by 

N(T) z*+$+$ N 
” (5.14) 

which takes into account the contribution of Y’s, e*ls, and NV flavors 

of neutrinos. Thus increasing NV, increases B in the notation of 

Eq. (5.13) and again leads to higher value of Td, with the same effect 

of producing more 4He. 

Let us now look at the observations55) which tells us the 

abundances of the light elements. In particular, we will be interested 

in the abundances of D, 3He, ‘IHe, and 7Li. Deuterium is the most easily 

destroyed of the light elements. It is also very difficult to produce 

in astrophysical systems where it is not further processed to form 3He. 

Therefore, any of the observed D is generally assumed to be primordial. 

Furthermore because deuterium is so easily destroyed (or burned) we must 

assume that the abundance of D produced in the big bang is greater than 

the observed value or 

(D/f& 2 KWOBS, (5.15) 

where (D/H) is the ratio (by number) of deuterium to hydrogen. 

Unlike deuterium, 3He is very difficult to destroy in its entirety 

in stellar systems. Pre-main-sequence stars are very efficient in 
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burning deuterium to 3He via D + p * 3He + Y. 3He is only destroyed at 

high temperatures (T > 7 x 106vK) through 3He + 3He + '(He + 2p and 3He + 

4 
He + 7Be + Y. At higher temperatures CT > lOgoK), 4He is burned to 

carbon and oxygen. The point is that, in general, some fraction g of 

the initial 3He abundance will survive stellar processing. If one takes 

into account the fact some of this 3He is redeposited in the 

interstellar medium (pre-solar) then in terms of g we have 

CD + 3He/H)j BB i CD + 3He)/HlpreS + (l/g - 1) 3He/Hlpreg (5.16) 

The value of g, however, can only be determined56) by models of stellar 

evolution and in fact may differ depending on the mass of the star. In 

low mass stars (M < gM,), g > 0.7 is not unreasonable while for high 

mass stars (gMg < M < 100 MS), g may be as low as l/4. Since an initial 

spectrum of stellar masses would cover all ranges, perhaps a lower limit 

to g of l/2 - l/4 would be safe. 

Using the observational limits on D/H and 3He/H (see 

refs. 55,57-601 

(D/H) L (1-2) x to -5 (5.17a) 

(D+3He1/Hlpre,S < 4 x 10 -5 (5.17b) 

3He/HlpreB 5 2 x 10 -5 (5.17c) 

we find from the results of big bang nucleosynthesis calculations 53) 

shown in Fig. 5 that 



(3-4) x 10-10 ( n 5 (7-10) X 10-10 
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(5.18) 

to be consistent with both 3He and D. 

7 Li is another isotope which iS in principle difficult to draw 

solid conclusions from. The main difficulty is that 7Li is both easily 

produced as well as destroyed. Recently, however, there have been some 

measurements6’ ) of the 7Li abundance in some very old Population II 

stars. Since some 7Li might have been destroyed before the formation of 

these stars, we might expect (7Li/H)PopII ( (7Li/H)BB. (The present 7Li 

abundance would be larger still representing the contribution from 

stellar processing.) The observed limit on the 7Li abundance is 

(7Li/H) pop11 I 1.5 x lo-lo (5.19) 

and is consistent with big bang nucleosynthesis for 

10-10 < n < 7 X 10 -10 (5.20) 

which agrees well with (5.18). 

This brings us to 4He which is probably the most important of the 

isotopes studied. The main reason ‘He is so important is that there is 

so much of it. Next to hydrogen it is the most abundant element around 

and its abundance is quite well known. Unlike the other light elements 

which have observational uncertainties of 2 loo%, the 4He abundances are 

measured to within a few per cent. The main problem is that it is also 

produced in stars and care must be taken in trying to derive the 

“observed” primordial abundance. 
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To be sure, one can place an upper limit on the primordial 

abundance by Y4gB < y40Bs (Y,, remember is the total 4He mass fraction). 

However, in order to use big bang nucleosynthesis to set limits on 

particle physics (e.g., NV) a much more accurate determination of Y4gB 

is needed. Spectral measurements 55) of galactic HI1 regions give very 

accurate values of Y4, however, there they have been contaminated with 

by-products of Stellar prOCeSSing. The observations of galaxies with 

low metal abundances could in principle yield an accurate value of Y4gB 

but these measurements are difficult because these galaxies are 

typically very far away. It is not possible within the scope of these 

lectures to cover completely the discussion of Y4. The best estimates 

consistent with the observations place Yl, in the range 

0.22 5 Y4 ( 0.25. (5.21) 

If we restrict ourselves as before to NV = 3, ~~~~ = 10.6 min., the 

upper limit on Y4 implies an upper limit on n from Fig. 6 

n<5x10 -5 (5.22) 

which is once again consistent with the previous limits Eq. (5.18). 

(The lower limit on Y4 does not give an interesting bound on n.) 

Figure 6 actually contains significantly more information than just 

a limit on n. In Fig. 6, we see clearly the behavior of Y,, with respect 

to all three parameters: n, T,,~, and Nv. It is clear how Y,, increases 

with increasing values of any of the three parameters. It is also 

51-53) immediately clear that we can set a limit on NV provided that we 



35 

have a lower limit to n. Using n > 3 x 10-l’ and Y4 < 0.25, we find that 

N” 5 4 with the equality being at best marginal. This implies that at 

most one more generation is allowed, assuming that the neutrinos 

associated with each generation are light and stable. 

The strong dependence of Y4 on the three parameters requires great 

precision to strengthen the limits due to nucleosynthesis. Strictly 

speaking, n > 3 x 10-lo and T,,* > 10.4 min. allows NV = 4 only if Y4 2 

0.253; however, we are not yet in a position to believe the third 

decimal place. For T 1,2 1 10.4 min., the limit Eq. (5.22) on n can be 

relaxed so that NV $ 3, Y4 < 0.25 implies n < 7 x 10-l’. We can alS0 

turn the limits around and set a lower limit to the helium abundance by 

assuming r~ > 3 x lo-” and Nv 1 3 then we have Y 4 > 0.24. If future 

observations actually yield Y4 < 0.24, one would have to argue that 

perhaps vT is heavy and unstable (the present limit is only my < 250 
T 

MeV). If we only assume Nv 1 2. then the lower limit on Y4 becomes Y4 2 

0.22. Any observation of the primordial helium abundance less than 0.22 

would indicate an inconsistency with the standard model. 

There is still one more important consequence of the above limits, 

that is the limit on n can be converted to a limit on the baryon density 

and nB. If we turn around Eq. (5.10) we have 

na = 3.56 x ‘07nh;2(To/2.7)3, (5.23) 

and using the limits on n Eq. (5.18), ho and To from (2.7 - 3)OK we find 

a range for 0 B 

0.0’ 5 RB IO.19. (5.24) 
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Recall that for a closed Universe R > 1, thus from Eq. (5.24) we can 

conclude that the Universe is not closed by baryons. This does not 

exclude the possibility that other forms of matter (e.g., massive 

neutrinos, etc.) exist in large quantities to provide for a large R. In 

fact, if large clusters of galaxies were representative of n the limit 

from nucleosynthesis would indicate that some form of dark matter must 

exist. 

VI DARK MATTER AND GALAXY FORMATION 

Inflation predicts that n-l. Big bang nucleosynthesis requires BB i 

0.2. The obvious resolution to this conflict is to suppose that there 

exists non-baryonic dark matter RD 2 0.8. Observational determinations 

of n however always prove to be less than a few tenths 621 indicating 

that perhaps a large fraction of the dark matter is unclustered. 

The above represents the first part of a growing chain of dark 

matter problems. Other dark matter problems become evident when one 

considers smaller scales. On the scale of galaxies, the observation of 

flat rotation curves implies strongly the existence of a dark halo 

component for spiral galaxies. That is, it appears that a substantial 

fraction of the galactic mass is non-visible. Because on galactic 63) 

scales R - 0.1, one might think that baryons are the logical candidate. 

However unless the baryons are carefully hidden in clouds distributed 

over the halo or in low mass stars with a special mass distribution, 

baryons are unlikely64) to provide the missing mass in galactic halos. 

(Very massive black holes, M > 100 Me, which leave little or no ejecta 

remain a possibility). 
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On smaller scales, those of dwarf spheroidal galaxies, there 

appears toes be a dark matter problem as we11.65) Even locally, in the 

solar neighborhood, there appears to be as much dark material as is in 

the form of stars and gas. 66) The dark matter in the galactic disk 

however is presumably in the form of baryons as they must have undergone 

dissipational processes to get them into the disk. 

Once we accept that non-baryonic dark matter is needed, we can 

distinguish67) three forms of dark matter depending on their impact on 

the growth of density perturbations needed to account for galaxy 

formation. Perturbations grow primarily during the matter dominated 

phase of expansion. Particles which are relativistic just before matter 

dominance are called hot particles. Neutrinos or light Higgsinos are 

examples. Because these particles are relativistic at relatively late 

times, their free streaming Wipes out perturbations out to scales6g) 

MJ = 3 x lo18Mg/m~(ev) 

where MJ is the Jeans mass and is the minimum scale on which clustering 

occurs. In the hot scenario of galaxy formation, large scale structures 

form first and must fragment down to galactic scales. 69) A second class 

of dark matter candidates is referred to as warm matter and includes 

more massive particles up to O(1) keV. In this case, initial mass 

scales are somewhat Smaller.70*71) If they exist, right-handed neutrinos 

might be warm particle candidates. 70) 

Particles which have been non-relativistic long before perturbation 

growth began are called cold particles. Particles more massive than 

1 keV such as heavy neutrinos, photinos, higgsinos, sneutrinos. etc. 
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are cold particle candidates. In the cold dark matter scenario72), 

small scale structui 3s (M > 6 10 Me) form first and larger scales are 

built in a hierarchical manner. For a summary of the pros and cons of 

these three possibilities in relation to models of galaxy formation, see 

ref. 73 in these proceedings. 

The existence of the dark matter candidate depends of course on the 

particular particle physics model that one employs. Supersymmetric 

models are interesting in this context because they guarantee one stable 

and probably massive particle. If the particle is neutral there are 

basically four possibilities: 1) the spin 0 partner of the neutrino or 

sneutrino; 2) the spin l/2 partner of an axion like particle or axino; 

3) the spin 312 gravitino and 4) the spin l/2 partner of the photon or 

photino. 

Similar to limits on neutrino masses, there are limits on most of 

the supersymmetric dark matter candidates. The exception is the 

sneutrino, whose mass is not constrained by cosmology 74) , but should be 

-2 GeV if it accounts for n-1. The axino mass limits depend on the 

temperature at which axino interactions dropped out of equilibrium but 

mumY mz < 1 keV. Similarly, the gravitino if stable must have 75) 

q 3,2 < 1 keV unless the number of gravitinos was reduced by inflation 76) 

in 
which caSe ‘312 is unconstrained. Photinos are most like neutrinos 

in the sense their mass must be77178) my 1 l/2 SeV. This last 

possibility has been suggested7’) to account for low energy antiprotons 

observed in cosmic rays through photino annihilations and photinos in 

the sun may provide 80) a direct observational test of dark matter 

through annihilations to energetic neutrinos. 



39 

The gravitino is also quite interesting cosmologically in that if 

it is not stable it must be very long lived. Its decay must be purely 

gravitational and hence its decay rate given by 81) 

r - a3 
3/2'M; (6.2) 

so that decays may have been occurring fairly recently. These late 

decays may be of interest 82) to galaxy formation models using a decaying 

particle scenario.83*82) Decays into photons and photinos can highly 

constrain the abundance of gravitinosg4) again necessitating an 

inflationary solution 76) but with a low reheat temperature so as not to 

reproduce gravitinos after inflation. Such low abundances of gravitinos 

decaying into Y + 7 however may be able to account for observed features 

in the Y-ray spectrum. 85) 

In this last section, we have seen some of the recent results and 

activity taking place between particle physics and cosmology, and will 

probably remain the most active area in the interface in the near 

future. Planck era COSmOlOgy must still rely heavily on breakthroughs 

in particle physics and quantum gravity. Inflation seems to have 

reached a plateau. Inflation is possible, but its origin is unclear. 

Perhaps some new idea from superstring theory will replace it. In 

sections IV and V, big bang nucleosynthesis and baryosynthesis have laid 

the corner stone of modern cosmology. This leaves us with the dark 

matter problems, their solutions and tests of the existence of dark 

matter. The detection7g*80*86) of dark matter offers cosmologists as 

well as particle physics with a promising challenge. 



40 

1) 

2) 

3) 

4) 

5) M. V. Fischetti, J. B. Hartle and B.-L. Hu, Phys. Rev. D20 (1979) 

1757; J. B. Hartle and B.-L. Hu. Phys. Rev. D20 (1979) 1772; D21 

(1980) 2756; J. 8. Hartle, Phys. Rev. D22 (1980) 2091; D23 (1981) 

2121. 

6) 

7) 

J. B. Hartle and S. W. Hawking, Phys. Rev. D28 (1983) 2960. 

T. Kaluza. Sitzunger Preuss. Akad. Wiss. Math. Phys. Kl (1921) 966; 

0. Klein, Z. Phys. 37 (1926) 895. 

8) E. Witten. Nucl. Phys. B186 (1981) 412; A. Salam and J. Strathdee, 

Ann. Phys. 141 (1982) 316. 

9) 

10) 

11) 

E. Witten, in Proc. June 1983 Shelter Island II Conf., eds. N. 

Khuri etal. (MIT Press, Cambridge MA 1984). 

E. Kolb. Fermilab preprint 85-17 (1985). 

Y. A. Gol'Fand and E. P. Likhtman, Pis'ma Zh. Eksp. Teor. Fiz. 13 

(1971) 323; D. Volkov and V. P. Akulov. Phys. Lett. 468 (1973) 109; 

J. Wess and B. Zumino, Nucl. Phys. B70 (1974) 39; for a review see: 

P. Fayet and S. Ferrara, Phys. Rep. 32C (1977) 249. 

L. Maiani, in Proc. of the Summer School of Gif-sur-Yvette ('979) 

P. 3; E. Witten, Nucl. Phys. B188 (1981) 513; S. Dimopoulos and H. 

Georgi, Nucl. Phys. B193 (1981) 150; N. Sakai. 2. Phys. Cl1 (1982) 

153. 

12) 

REFERENCES 

A. Ai Per&as and R. W. Wilson, Ap. J. 142 (1965) 419. 

G. Camow, Phys. Rev. 70 (1946) 572; R. A. Alpher, H. Bethe and G. 

Gamow, Phys. Rev. 73 (1948) 803. 

S. W. Hawking, Nucl. Phys. Bl44 (1978) 349. 

For reviews see articles by B. S. Dewitt and S. W. Hawking in 

General Relativity: & Einstein Centenary Survey, S. W. Hawking and 

W. Israel (eds) (Cambridge Univ. Press, 1979). 



41 

'3) 

14) 

15) 

16) 

17) J. Ellis, M. K. Caillard and B. Zumino. Phys. Lett. 948 (1980) 343; 

J. Ellis, M. K. Gaillard, L. Maiani and B. Zumino, in 

Unification of the Fundamental Particle Interactions, ed. S. 

Ferrara, J. Ellis and P. Van Nieuwenhuizen (Plenum Press, NY, 1980) 

p. 69. 

18) 

19) 

20) 

21) 

J. Wess and B. Zumino, Phys. Lett. 498 (1974) 52; J. Iliopoulos and 

8. Zumino, Nucl. Phys. 876 (19741 310; S. Ferrara, J. Iliopoulos 

and 8. Zumino, Nucl. Phys. 877 (1974) 413; M. T. Grisaru. W. Siegel 

and M. Rocek, Nucl. Phys. 8159 (1979) 420. 

J. Ellis and D. V. Nanopoulos, Phys. Lett. 116B (1982) 133. 

See reviews by: R. Arnowitt, A. H. Chamseddine and P. Nath, 

Northeastern Univ. preprints 2597, 2600, 2613 (1983); J. Ellis, 

CERN preprint TH-3718 (1983); D. V. Nanopoulos. CERN preprint 

TH-3699 (1983); H.-P. Nilles. Phys. Rep. 1lOC (1984) 1; j. 

Polchinski, Harvard Univ. preprint. HUTP-83/A036 (1983). 

E. Cremmer and B. Julia, Phys. Lett. 80B (1978) 48 and Nucl. Phys. 

8159 (1979) 141; B. deWit and H. Nicolai. Phys. Lett. 108B (1981) 

285 and Nucl. Phys. B208 (1982) 323. 

J. H. Schwarz, Phys. Rep. 89 (1982) 223; M. B. Green and J. H. 

Schwarz, Caltech preprints CALT-68-1182, CALT-68-1194 (1984). 

A. D. Linde, Rep. Prog. Phys. 47 (1984) 925; R. Brandenberger, Rev. 

Mod. Phys. 57 (19851 1. 

A. H. Guth, Phys. Rev. D23 (1981) 347. 

J. Uson and D. Wilkenson, in Proc. of the Inner Space/Outer Space ---- 

Conf.. eds. E. Kolb, M. S. Turner, D. Lindley, K. A. Olive, and D. 

Seckel (Univ. of Chicago Press 1985). 



42 

22) 

23) 

24) 

25) 

26) 

27) 

28) 

29) 

30) 

31) 

32) 

33) 

34) 

35) 

S. Coleman, Phys. Rev. D15. 2929 (1977); C. Callan and S. Coleman, 

Phys. Rev. D16, 1762 (1977). 

A. H. Guth and E. Weinberg, Phys. Rev. D23, 826 (1981); Nucl. Phys. 

8212, 321 (1983). 

A. D. Linde, Phys. Lett. 108B, 389 (1982); A. Albrecht and P. J. 

Steinhardt, Phys. Rev. Lett. 48, 1220 (1982). 

S. Coleman and S. Weinberg, Phys. Rev. D7, 1888 (1973). 

A. D. Linde, Phys. Lett. 116B, 335 (1982). 

J. Ellis, D. V. Nanopoulos, K. A. Olive, and K. Tamvakis. Phys. 

Lett. 118B, 335 (1982). 

S. W. Hawking, Phys. Lett. 1158, 295 (1982); A. H. Cuth and S.-Y. 

Pi, Phys. Rev. Lett. 49, 1110 (1982); A. A. Starobinski, Phys. 

Lett. 1178, 175 (1982); J. M. Bardeen. P. J. Steinhardt, and M. S. 

Turner, Phys. Rev. D28. 679 (1983). 

J. Breit, S. Gupta, and A. Zaks, Phys. Rev. Lett. 51. 1007 (1983). 

E. R. Harrison, Phys. Rev. Dl, 2726 (1970); Ya. B. Zel'dovich, Mon. 

Not. R. Ast. Sot. 160, 1P (1972). 

W. H. Press, Phys. Ser. 21, 702 (1980). 

J. Ellis, D. V. Nanopoulos, K. A. Olive, and K. Tamvakis, Nucl. 

Phys. B221. 224 (1983). 

D. V. Nanopoulos, K. A. Olive, M. Srednicki, and K. Tamvakis, Phys. 

Lett. 123~. 41 (1983). 

B. Ovrut and P. J. Steinhardt, Phys. Rev. Lett. 53 (1984) 732; P. 

Binetruy and S. Mahajan, LBL preprint 1985. 

G. Gelmini, D. V. Nanopoulos and K. A. Olive, Phys. Lett. 1318 

('983) 53. 



43 

36) B. A. Ovrut and P. J. Steinhardt, Phys. Lett. 1338 

37) L. Jensen and K. A. Olive, Fermilab preprint 85-53 

38) J. Ellis, E. Enqvist, D. V. Nanopoulos, K. A. 

Srednicki, Phys. Lett. 152B (1985) 175. 

(1983) 161. 

(1985). 

Olive and M. 

39) 

40) 

41) 

42) 

43) 

44) 

45) 

46) 

47) 

48) 

49) 

E. Cremmer, S. Ferrara, C. Koannas, and D. V. Nanopoulos, Phys. 

Lett. 133B (1983) 287; J. Ellis, A. B. Lahanas, D. V. Nanopoulos, 

and K. Tamvakis, Phys. Lett. 134B (1984) 29; J. Ellis, C. Kounnas, 

and D. V. Nanopoulos, Nucl. Phys. B241 (1984) 406 and Nucl. Phys. 

B247 (1984) 373. 

E. Witten, Princeton Univ. preprint February 1985. 

A. Albrecht and R. Brandenberger, Santa Barbara preprint 

NSF-ITP-84-146 (1984); C. D. Coughlan and G. G. Ross, Oxford 

preprint (1984); L. Jensen and K. A. Olive, Fermilab preprint 

85171, 1985. 

G. Mazenko, W. Unruh. and R Wald, Phys. Rev. D31 (1985) 273. 

A. D. Sakharov, Zh. Eksp. Teor. Fiz. Pisma. Red. 5 (1967) 32. 

For a review see: E. Kolb and M. S. Turner, Ann. Rev. Nucl. Part. 

Scf. 33 (1983) 645. 

G. Steigman, Ann. Rev. Astron. and Astrophys. 14 (1976) 339. 

S. Weinberg, Phys. Rev. Lett. 42, 850 (1979); D. Toussaint, S. B. 

Trelman. F. Wilczek, and A. Zee, Phys. Rev. D19, 1036 (1979). 

E. W. Kolb and S. Wolfram, Phys. Lett. B91, 217 (1980); E. W. Kolb 

and S. Wolfram, Nucl. Phys. B172. 224 (1980); J. N. Fry, K. A. 

Olive, and M. S. Turner, Phys. Rev. D22, 2953, 2977 (1980). 

D. V. Nanopoulos and K. Tamvakis, Phys. Lett. 114B (1982) 235. 

A. Masfero. D. V. Nanopoulos, K. Tamvakis, and T. Yanagida, Z. 

Phys. Cl7 (1983) 33. 



44 

50) 

51) 

52) 

53) 

54) 

55) 

56) 

57) 

58) 

R. I'. Wagoner, W. A. Fouler, and F. Hoyle, Ap. J. 148, 3 (1967); R. 

V. Wagoner, Ap. J. Supp. 18, 247 (1969); R. V. Wagoner, Ap. J. 179, 

343 (1973); D. N. Schramm and D. V. Wagoner, AM. Rev. Nucl. Part. 

Sci. 27, 37 (1977). 

C. Steigman. D. N. Schramm, and J. E. Cunn, Phys. Lett. B66, 202 

(1977); J. Yang, D. N. Schramm, G. Steigman, and R. T. Rood, Ap. J. 

227, 697 (1979). 

K. A. Olive, D. N. Schramm, G. Steigman. M. S. Turner, and J. Yang, 

Ap. J. 246, 547 (1981). 

J. Yang, M. S. Turner, G. Steigman, D. N. Schramm, and K. A. Olive, 

Ap. J. 281, 493 (1984). 

Y. David and H. Reeves, in Physical Cosmology, eds. R. Balian, J. 

Audouze, and D. N. Schramm (North-Holland Pub. Co. Amsterdam. 1980) 

443. 

For a recent compilation of observations see: the Proceedings of 

the ES0 Workshoe% Primordial Helium, Eds. P. A. Shaver, D. Kunth. -- 

and K. Kajar, Garching, Germany, 1983. 

I. Iben, Ap. J. 147, 624 (1967); R. T. Rood, Ap. J. 177, 681 

(1972); I. Iben and J. W. Truran, Ap. J. 220, 980 (1978); D. S. P. 

Dearborn, J. B. Blake, K.,L. Hainebach. and D. N. Schramm, Ap. J. 

223. 552 (1978); W. Brunish and J. W. Truran (in preparation), 

1983. 

D. C. Black, Nature Phys. Sci. 234, 148 (1971); D. C. Black, 

Geochim. Cosmochim. 36, 347 (1972); J. Geiss and H. Reeves, Astron. 

Astrophys. 18, 126 (1972). 

J. T. Trauger etal., Ap. J. Lett. 184, L137 (1973); V. Kunde etal., 

Ap. J. 263, 443 (1982). 



45 

59) D. G. York and J. 8. Rogerson, Jr., Ap. J. 203, 378 (1976); A. 

Vidal-Hadjar etal., Ap. J. 211, 91 (1977); A. Vidal-Madjar etal., 

Astron. Astrophys. 120, 58 (1983). 

60) E. Anders, D. Heymann, and E. Mazor, Geochim. Cosmochim. 34, 127 

(1970). 

61) F. Spite and M. Spite, Astron. Astrophys~ 115, 357 (1982); M. Spite 

and F. Spite, Nature 297, 483 (1982). 

62) M. Davis and P. J. E. Peebles, Ann. Rev. Astron. Astrophys. 21 

(1983) 109. 

63) S. M. Faber and J. J. Gallagher, Ann. Rev. Astron. Astrophys. 17 

(1979) 135. 

64) D. Hegyi and K. A. Olive, Phys. Lett. 126B (1983) 28 and Fermilab 

preprint 85126 (1985). 

65) M. Aaronson, Ap. J. 266 (1983) Lll; S. M. Faber and D. N. C. Lin, 

Ap. J. 266 (1983) L17. 

66) J. Bahcall. Ap. J. 276 (1984) 169. 

67) J. R. Bond and A. S. Szalay, Ap. J. 274 (1983) 443. 

68) J. R. Bond, G. Efstathiou and J. Silk, Phys. Rev. Lett. 45 (1980) 

1980; Ya. B. Zeldovich and R. A. Sunyaev, Pisma Ast. Zh. 6 (1980) 

451. 

69) A. Melott, Mon. Not. R. Ast. Sot. 202 (1983) 595; J. R. Bond, A. S. 

Szalay, and S. D. M. White, Nature 301 (1983) 584. 

70) K. A. Olive and M. S. Turner, Phys. Rev. D25 (1982) 213. 

71) J. R. Bond, A. S. Szalay, and M. S. Turner, Phys. Rev. Lett. 48 

(1982) 1636. 

72) P. J. E. Peebles, Ap. J. 263 (1982) Ll and Ap. J. 277 (1984) 440; 

G. Blumenthal, S. M. Faber, J. R. Primack and M. Rees, Nature 311 

(1984) 517. 



46 

73) 

74) 

75) 

76) 

77) 

78) 

79) 

80) 

81) 

82) 

83) 

84) 

S. D. M. White, these proceedings. 

L. F: Ibanez, Phys. L&t. 137B (1984) 160; J. Hagelin. G. L. Kane, 

and S. Raby, Nucl. Phys. B241 (1984) 638. 

H. R. Pagels and J. R. Primack, Phys. Rev. Lett. 48 (1982) 223. 

J. Ellis, A. D. Linde, and D. V. Nanopoulos, Phys. Lett. 1188 

(1982) 39. 

S. Weinberg, Phys. Rev. Lett. 50 (1983) 387. 

H. Goldberg, Phys. Rev. Lett. 50 (1983) 1419; L. Krauss, Nucl. 

Phys. B227 (1983) 556; J. Ellis. J. Hagelin, D. V. Nanopoulos, K. 

A. Olive, and M. Srednicki, Nucl. Phys. 8238 (1984) 453. 

J. Silk and M. Srednicki, Phys. Rev. Lett. 53 (1984) 624. 

J. Silk, K. A. Olive, and M. Srednicki, Fermilab preprint 85-62 

(1985). 

S. Weinberg, Phys. Rev. Lett. 48 (1982) 1303. 

K. A. Olive, D. Seckel, and E. Vfshniac. Ap. J. (in press) 1985; K. 

A. Olive, D. N. Schramm and M. Srednfcki, Nucl. Phys. B255 (1985) 

495. 

M. Davis, M. Lecar, C. Pryor, and E. Witten, Ap. J. 250 (1981) 423; 

P. Hut and S. D. M. White, Nature 310 (1984) 637; M. S. Turner, G. 

Steigman, and L. Krause., Phys. Rev. Lett. 52 (1984) 2090; G. 

Gelmini, D. N. Schramm, and J. W. E. Valle. Phys. Lett. 146B (1984) 

311. 

D. V. Nanopoulos, K. A. Olive and M. Srednicki, Phys. Lett. 127B 

(1983) 30; M. Yu Khlopov and A. D. Linde, Phys. Lett. 138B (1984) 

265; J. Ellis, J. Kim and D. V. Nanopoulos, Phys. Lett. 1458 (1984) 

181; J. Ellis, D. V. Nanopoulos. and S. Sarkar, CERN preprint Th. 

4057 (1985); R. Juszkieuics, J. Silk, and A. Stebbins, Phys. Lett. 

B (submitted) 1985. 



47 

85) K. A. Olive and J. Silk. Fermilab preprint 85-43 1985. 

86) A. Drukier and L. Stodolsky, Phys. Rev. D30 (1984) 2295; M. Goodman 

and E. Witten, Princeton Univ. preprint (1984). 



48 

FIGURE CAPTIONS 

Figure 1: The scalar potential for a first order phase transition. 

Figure 2: A schematic view of the type of scalar potential needed 

for new inflation. 

Figure 3: The time evolution of the baryon asymmetry in Units of 

CAB) for 1) MK = 3,1018u; 2) 3~1O'~u: 3) 3~10~~0 and 4) if 

scatterings remain very ePPective. 

Figure 4: The final baryon asymmetry as a Punction of K - 

3~1O’~a/M~ in units OP (AB). The dashed curve assumes ePPective 

acatterings. 

Figure 5: The abundances (by number relative to hydrogen) of D, 3He 

and their sum as a function of n for NV _ 3 and T1,2 = 10.6 min. 

Figure 6: The abundance (by mass) of 'He as a function of n for Nv 

= 2, 3 and 4, and for T,,~ = 10.4 min. (solid), 10.6 min (dashed), 

and 10.8 min (dotted). 
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